Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium.
نویسندگان
چکیده
AIMS Vascular endothelial dysfunction and inflammation are hallmarks of atherosclerosis. Krüppel-like factor 2 (KLF2) is a key mediator of anti-inflammatory and anti-atherosclerotic properties of the endothelium. However, little is known of the molecular mechanisms for regulating KLF2 transcriptional activation. METHODS AND RESULTS Here, we found that histone deacetylase 5 (HDAC5) associates with KLF2 and represses KLF2 transcriptional activation. HDAC5 resided with KLF2 in the nuclei of human umbilical cord vein endothelial cells (HUVECs). Steady laminar flow attenuated the association of HDAC5 with KLF2 via stimulating HDAC5 phosphorylation-dependent nuclear export in HUVEC. We also mapped the KLF2-HDAC5-interacting domains and found that the N-terminal region of HDAC5 interacts with the C-terminal domain of KLF2. Chromatin immunoprecipitation and luciferase reporter assays showed that HDAC5 through a direct association with KLF2 suppressed KLF2 transcriptional activation. HDAC5 overexpression inhibited KLF2-dependent endothelial nitric oxide synthesis (eNOS) promoter activity in COS7 cell and gene expression in both HUVECs and bovine aortic endothelial cells (BAECs). Conversely, HDAC5 silencing enhanced KLF2 transcription and hence eNOS expression in HUVEC. Moreover, we observed that the level of eNOS protein in the thoracic aorta isolated from HDAC5 knockout mice was higher, whereas expression of pro-inflammatory vascular cell adhesion molecule 1 was lower, compared with those of HDAC5 wild-type mice. CONCLUSIONS We reveal a novel role of HDAC5 in modulating the KLF2 transcriptional activation and eNOS expression. These findings suggest that HDAC5, a binding partner and modulator of KLF2, could be a new therapeutic target to prevent vascular endothelial dysfunction associated with cardiovascular diseases.
منابع مشابه
SAP18 promotes Krüppel-dependent transcriptional repression by enhancer-specific histone deacetylation.
Body pattern formation during early embryogenesis of Drosophila melanogaster relies on a zygotic cascade of spatially restricted transcription factor activities. The gap gene Krüppel ranks at the top level of this cascade. It encodes a C2H2 zinc finger protein that interacts directly with cis-acting stripe enhancer elements of pair rule genes, such as even skipped and hairy, at the next level o...
متن کاملProtein kinase D2 controls cardiac valve formation in zebrafish by regulating histone deacetylase 5 activity.
BACKGROUND The molecular mechanisms that guide heart valve formation are not well understood. However, elucidation of the genetic basis of congenital heart disease is one of the prerequisites for the development of tissue-engineered heart valves. METHODS AND RESULTS We isolated here a mutation in zebrafish, bungee (bng(jh177)), which selectively perturbs valve formation in the embryonic heart...
متن کاملKrüppel-like zinc finger protein Gli-similar 2 (Glis2) represses transcription through interaction with C-terminal binding protein 1 (CtBP1)
Glis2 is a member of the Gli-similar (Glis) subfamily of Krüppel-like zinc finger transcription factors. It functions as an activator and repressor of gene transcription. To identify potential co-activators or co-repressors that mediate these actions of Glis2, we performed yeast two-hybrid analysis using Glis2 as bait. C-terminal binding protein 1 (CtBP1) was identified as one of the proteins t...
متن کاملHistone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression.
During inflammatory events, the induction of immediate-early genes, such as TNF-alpha, is regulated by signaling cascades including the JAK/STAT, NF-kappaB, and the p38 MAPK pathways, which result in phosphorylation-dependent activation of transcription factors. We observed the direct interaction of histone deacetylase (HDAC) 3, a class I histone deacetylase, with MAPK11 (p38 beta isoform) by W...
متن کاملFluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS.
Fluid shear stress generated by steady laminar blood flow protects vessels from atherosclerosis. Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) are fluid shear stress-responsive genes and key mediators in flow anti-inflammatory and antiatherosclerotic actions. However, the molecular mechanisms underlying flow induction of KLF2 and eNOS remain largely unknown. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2014